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Abstract

We show that the annular network G(6, 3) is recoverable, and we in-
dicate how the proof might be generalized to G(2n, n).

1 Introduction

We recall the basic definitions from [2].

1.1 Definition. A graph with boundary is a triple Γ = (V, ∂V,E), where V is a
set of vertices, ∂V ⊆ V is a non-empty set of boundary vertices, and E ⊆ V ×V
is a symmetric, irreflexive relation on V . That is, (i; i) /∈ E for any i ∈ V ,
and (i; j) ∈ E ⇐⇒ (j; i) ∈ E for all i, j ∈ V . The interior nodes are those
contained in intV = V \ ∂V .

1.2 Definition. A non-linear conductance network is a pair (Γ, γ), where Γ
is a graph with boundary, and γ is a map which assigns to each (i; j) ∈ E a
conductance function γi;j : R→ R, subject to the following constraints:

• γi;j(−x) = −γj;i(x),

• γi;j(0) = 0,

• γi;j is strictly increasing, and

• γi;j is bijective.

Notice that the last two constraints together imply that γi;j is continuous,
and that this definition differs slightly from the one given in [2, Definition 2.2].

1.3 Definition. A potential function on a network (Γ, γ) is a function u : V →
R. The current from vertex i to vertex j is Ii;j(u) = γi;j(u(i)−u(j)). The total
current coming out of vertex i is given by

Ii(u) =
∑

(i;j)∈E

Ii;j(u).

A potential function u is harmonic if Ii(u) = 0 for all i ∈ intV .
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2 Main Result

2.1 Definition. An annular network G(m,n) is a network embedded in an
annulus with m rays and n circles. We label the rays from 1 to m counter-
clockwise starting from the north, and the circles from 1 to n starting from
the innermost one. The interior vertices are those at the intersections of rays
and circles, and we denote the vertex at the intersection of ray r and circle c
by vr,c. The exterior vertices are the endpoints of the rays, and we denote the
inner and outer endpoints of ray r by vr,0 and vr,n+1 respectively. Also, we
let ui,j = u(vi,j), where u is the potential function of G(m,n). See G(6, 3) in
Figure 1 for example.

1

2

3

4

5

6

1 2 3

Figure 1: G(6, 3) with its 6 rays and 3 circles labeled.

2.2 Lemma. [2, Corollary 6.3] The Dirichlet-to-Neumann map is well-defined
for arbitrary non-linear conductance networks.

2.3 Theorem. The annular network G(6, 3) is recoverable.

Proof. We begin by assigning the values shown in Figure 2, where the numbers
in parentheses are currents. Right away, we see that u2,1, u3,1, u4,1, u5,1, u6,1
are all zero by the harmonicity of u and the bijectivity of the conductivity
function. Then for the same reasons, u3,2, u4,2, u5,2 are also all zero, and then
u3,3 = 0. Next, we look at v1,1, v2,2, v3,3, v5,3, v6,2 following the argument in [1,
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Figure 2: G(6, 3) with its initial conditions labeled.

Lemma 2.1]. Because u is harmonic, u1,1u2,2, u2,2u3,3, u3,3u5,3, u5,3u6,2, and
u6,2u1,1 are all ≤ 0. Therefore, the product of all of these is also ≤ 0, but this
is also a square, and hence ≥ 0. Thus, at least one of these voltages must be
zero. But if one of them is zero, all of the others must also be zero because of
the harmonicity of u.

Now we’re going to show the current flows and the signs of the potentials.
Suppose t > 0 for the sake of determining the direction of the current flows.
By Lemma 2.1, for a given t, I1,0(t) = γ1,0;1,1(t − 0). Then, γ1,0;1,1 is positive.
So, by the harmonicity of the potential function, γ1,1;1,2 is positive. Thus, since
the conductivity function is bijective, u1,2 is negative. So, since u2,2 − u1,2
is positive, γ2,2;1,2(u2,2 − u1,2) is positive. By the same reasoning, γ6,2;1,2 is
positive. So, by harmonicity, γ1,2;1,3 is positive. Therefore, u1,3 < u1,2. So,
u1,3 is negative. By harmonicity, γ2,3;2,2 and γ6,3;6,2 are positive. As a result,
u2,3 and u6,3 are positive. Hence, γ2,3;1,3(u2,3 − u1,3) and γ6,3;1,3(u6,3 − u1,3)
are positive. By the harmonicity of the potential function γ1,3;1,4 is positive.
Accordingly, u1,4 < u1,3. So, u1,4 is negative. γ2,3;3,3(u2,3 − u3,3) is positive,
since u2,3 − u3,3 is positive. Then, by the same reasoning, γ6,3;5,3 is positive.
Therefore, by harmonicitiy, γ2,4;2,3, γ6,4;6,3, γ5,3;5,4, γ3,3;3,4 are positive. Hence,
u2,4 > u2,3, and u6,4 > u6,3, so u2,4 and u6,4 are positive. u5,4 and u3,4 are
negative, because γ5,3;5,4 and γ3,3;3,4 are positive. Therefore, all of the currents
are completely determined by t.

Since γ1,0;1,1(t− 0) = γ1,0;1,1(t) = I1,0(t), if t is varied over the real numbers
the conductivity function, γ1,0;1,1(x) can be calculated by reading the current
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from the response map. By the symmetry of the graph, we can reassign the
boundary values so that the conductance function can be found on each edge
(i; j) ∈ E where i ∈ ∂V .

Now consider u2,3. Since the total current at v2,4 and the potential u2,4
can be read from the response map, u2,3 can be calculated. By harmonicity,
γ2,3;3,3 = γ3,3;3,4 = −I3,4(u), which can be measured. Then, since u2,3 and u3,3
are known, the conductance function on the edge, (2, 3; 3, 3), is known. γ2,3;2,4
and γ2,3;3,3 are known, and by symmetry, γ2,3;1,3 is known. So by harmonicity,
γ2,3;2,2 is known. Since u2,3 and u2,2 are known, the conductance function
γ2,3;2,2(x) is known.

By symmetry, u1,2 is known, and by harmonicity, γ2,2;1,2 = −γ2,2;2,3, which
is known, so γ2,2;1,2(x) is known.

By symmetry, the conductance function is known for each edge (i; j) ∈ E.

3 Generalization to G(2n, n)

Consider the graph G(2n, n) with n ≥ 4.

3.1 Lemma. Let u1,0 = t, let u2,0, u3,0, . . . , u2n,0 = 0, let I2,0, I3,0, . . . , I2n,0 =
0, and let un+1,n+1 = 0. Then,

u1,1, u2,1, . . . . . . . . . , u2n,1
u2,2, u3,2, . . . . . . , u2n,2
u3,3, u4,3, . . . , u2n−3,3

...
un+1,n

are all equal to zero.

Proof. By the harmonicity of the potential function, the zero potentials pro-
pogate, as in Theorem 2.3, such that u2,1, u3,1, . . . , u2n,1 all equal zero. On
circle 1, there are 2n − 1 potentials of 0. All 2n − 1 of these potentials are on
adjacent vertices with the middle vertex lying on the intersection between the
circle 1 and ray n + 1. Since u is harmonic, each time the index of the circle
increases, two fewer vertices are determined to have potential zero. Since we
have one fewer potential 0 on each side of the group of adjacent 0 potentials, the
middle vertex will lie on the ray n+ 1. Since the first circle has 2n− 1 vertices
with potential 0, the nth circle has (2n−1)−(2(n−1)) = 2n−1−2n+2 = 1 ver-
tex with zero potential, since the group of vertices on the nth circle is centered
around the n+ 1st ray, un+1,n = 0.

So, following the argument in [1, Lemma 2.1], u1,1u2,2, u2,2u3,3, . . . , un−1,n−1un,n
and un,nun+2,n, un+2,nun+3,n−1, . . . , u2n,2u1,1 are all ≤ 0. So, their product
is ≤ 0, but is also ≥ 0 since it is a square. Thus, u1,1, u2,2, . . . , un,n and
un+2,n, un+3,n−1, . . . , u2n,2 all equal zero, since if one is zero, then, by har-
monicity, the rest are zero as well.
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3.2 Conjecture. For the graph G(2n, n), the voltages and currents are all
determined by t.

3.3 Proposition. Suppose Conjecture 3.2 holds. Then, G(2n, n) is recoverable.

Proof. Since γ1,0;1,1(t − 0) = γ1,0;1,1(t) = I1,0(t), if t is varied over the real
numbers the conductivity function, γ1,0;1,1(x) can be calculated by reading the
current from the response map. By the symmetry of the graph, we can reassign
the boundary values so that the conductance function can be found on each
edge (i; j) ∈ E where i ∈ ∂V .

Consider vn−1,n. Since un−1,n+1 is known by the response map, the total
current on vn−1,n+1 is known by the response map, and γn−1,n+1;n−1,n is known,
then un−1,n is known. Then, since γn,n+1;n,n is known, and the current on the
edge, (n, n;n − 1, n) is equal to the current on (n, n + 1;n, n), γn,n;n−1,n is
known, and by symmetry, all edges on the nth and first circles are known. So,
γn−1,n;n−2,n is known. Then by harmonicity, the current on the edge (n −
1, n;n − 1, n − 1) is known. So, since un−1,n and un−1,n−1 are also known,
γn−1,n;n−1,n−1 is known. By symmetry, all the γi,n;i,n−1 and γi,1;i,2, where
i = 1, 2, . . . , 2n− 1, 2n are known.

Each vertex vi,i ∈ intV has four edges adjacent to it, two of the edges adja-
cent to each vi,i have current zero, so, by harmonicity, the other two must have
currents of equal magnitude, but opposite sign. So by following the procedure
above, the conductances on the edges adjacent to the vi,is can be found, so by
symmetry, all of the conductances and all of the potentials are known for graphs
with 2n rays and n circles.
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